
OpenCrypto
Unchaining the

JavaCard Ecosystem

https://boucycrypto.com

Who we are

Vasilios Mavroudis
Doctoral Researcher, UCL

George Danezis
Professor, UCL

Petr Svenda
Assistant Professor, MUNI
Co-founder, Enigma Bridge

Dan Cvrcek
Co-founder, Enigma Bridge

Contents

1.  Smart Cards

2.  Java Cards

3.  What’s the problem?

4.  Our solution

5.  Tools for developers

6.  More to come...

SmartCards
- GSM SIM modules

- Digital signatures

- Bank payment card (EMV standard)

- System authentication

- Operations authorizations

- ePassports

- Secure storage and encryption device

The Hardware
- 8-32 bit processor @ 10+MHz

- Persistent memory 32-150kB (EEPROM)

- Volatile fast RAM, usually <<10kB

- Truly Random Number Generator

-  Cryptographic Coprocessor (3DES,AES,RSA-2048,...)

- Limited interface, small trusted computing base

EEPROM	

CPU	

CRYPTO	

SR
AM

	

RO
M
	RNG	

The Hardware
Intended for physically unprotected environment

- NIST FIPS140-2 standard, Level 4

- Common Criteria EAL4+/5+/6

Tamper protection
- Tamper-evidence (visible if physically manipulated)
- Tamper-resistance (can withstand physical attack)

- Tamper-response (erase keys…)

Protection against side-channel attacks (power,EM,fault)

Periodic tests of TRNG functionality

Why we like smartcards
§  Number of vendors and independent HW platforms

§  High-level of security (CC EAL5+, FIPS 140-2)

§  Secure memory and storage

§  Fast cryptographic coprocessor

§  Programmable secure execution environment

§  High-quality and very fast RNG

§  On-card asymmetric key generation

Operating Systems
.NET for smartcards
- Similar to JavaCard, but C#

- Limited market penetration

JavaCard
- Open platform from Sun/
Oracle

- Applets portable between
cards

MultOS
- Multiple supported languages

- Native compilation

- Certified to high-levels

- Often used in bank cards

javacard

History
Until 1996:
- Every major smart card vendor had a proprietary solution

- Smart card issuers were asking for interoperability between vendors

In 1997:
- The Java Card Forum was founded

- Sun Microsystems was invited as owner of the Java technology

- And smart card vendors became Java Card licensees

The Java Card Spec is born
Sun was responsible for managing:
§  The Java Card Platform Specification

§  The reference implementation

§  A compliance kit

Today, 20 years after:
§  Oracle releases the Java Card specifications (VM, RE, API)

§  and provides the SDK for applet development

The API Specification
-  Encryption, authentication, & other algorithms

-  Ensures interoperability

-  JC straightforward to use

- Implementations are certified for functionality and security

A full ecosystem with laboratories & certification authorities

A success!
20 Billion Java Cards sold in total
3 Billion Javacards sold per year

1 Billion contactless cards in 2016

 Common Use Cases:
 - Telecommunications

 - Payments

 - Loyalty Cards
JavaCardForum

Timeline
3.0.5	

3.0.4	

3.0.1	

2.2.2	

2.2.0	

2.1.1	

2015 - Diffie-Hellman modular exponentiation, RSA-3072, SHA3, plain
ECDSA

2011 - DES MAC8 ISO9797.

Wikipedia

2009 - SHA-224, SHA2 for all signature algorithms

2006 - SHA-256, SHA-384, SHA-512, ISO9796-2, HMAC, Korean
SEED

2002 - EC Diffie-Hellman, ECC keys, AES, RSA with variable key length

2000 - RSA without padding.

Bad Omens I

Compliance

§  RMI introduced in Java Card Spec. 2.2 (2003) → never adopted

§  Java Card 3.0 Connected (2009) → never implemented

§  Annotation framework for security interoperability → not adopted

-  Vendors implement a subset of the Java Card specification:
q  No list of algorithms supported

q  The specific card must be tested

Bad Omens II
Three years late
- 1 year to develop the new platform after the release of a specification

- 1 year to get functional and security certification

- 1 year to produce and deploy the cards

Interoperability
- Most cards run a single applet

- Most applets written & tested for a single card

- Most applets run only on a single vendor’s cards

Walled Gardens
Proprietary APIs

- Additional classes offering various desirable features

- Newer Algorithms, Math, Elliptic Curves…

- Vendor specific, interoperability is lost

-  Only for large customers

-  Small dev houses rarely gain access

- Very secretive: NDAs, Very limited info on the internet

Open crypto

Motivation
- Technology moves increasingly fast, 3 years is a long time

- Patchy coverage of the latest crypto algorithms

-  in-the-spec ≠ in-the-market

A new landscape:
-  IoT needs a platform with these characteristics

-  Lots of small dev. houses

-  Java devs in awe → No Integers, Primitive Garbage Collection

- People want to build new things!!

Things People Already Built!
-  Store and compute on PGP private key

-  Bitcoin hardware wallet

-  Generate one-time passwords

-  2 factor authentication

-  Store disk encryption keys

-  SSH keys secure storage

What if they had access to the full power of the cards?

List	of	JavaCard	open-source	apps:	hBps://github.com/EnigmaBridge/javacard-curated-list	

The OpenCrypto Project

+	Dev	tools	

JCMath Lib

Class	 Java	 JC	Spec.	 JC	Reality	 JCMathLib	
Integers	 ✔	 ✔	 ✘	 ✔	

BigNumber	 ✔	 ✔	 ✘	 ✔	
EC	Curve	 ✔	 ~	 ~	 ✔	
EC	Point	 ✔	 ✘	 ✘	 ✔	

JCMath Lib
Integer
Addition

Subtraction

Multiplication

Division

Modulo

Exponentiation

BigNumber
Addition (+Modular)

Subtract (+Modular)

Multiplication (+Modular)

Division

Exponentiation
(+Modular)

++, --

EC Arithmetic
Point Negation

Point Addition

Point Subtraction

Scalar Multiplication

h?ps://bouncycrypto.com	

package opencrypto.jcmathlib;
public class ECExample extends javacard.framework.Applet {
 final static byte[] ECPOINT = {(byte)0x04, (byte) 0x3B… };
 final static byte[] SCALAR = {(byte) 0xE8, (byte) 0x05… };

 MLConfig mlc;
 ECCurve curve;
 ECPoint point1, point2;

 public ECExample() {
 // Pre-allocate all helper structures
 mlc = new MLConfig((short) 256);
 // Pre-allocate standard SecP256r1 curve and two EC points on this curve
 curve = new ECCurve(false, SecP256r1.p, SecP256r1.a,

 SecP256r1.b, SecP256r1.G, SecP256r1.r, mlc);
 point1 = new ECPoint(curve, mlc);
 point2 = new ECPoint(curve, mlc);
 }

…

// NOTE: very simple EC usage example - no CLA/INS, no communication with host...
public void process(APDU apdu) {
 if (selectingApplet()) { return; }

 // Generate first point at random
 point1.randomize();
 // Set second point to predefined value
 point2.setW(ECPOINT, (short) 0, (short) ECPOINT.length);
 // Add two points together
 point1.add(point2);
 // Multiply point by large scalar
 point1.multiplication(SCALAR, (short) 0, (short) SCALAR.length);
}

Building the Building Blocks

CPU is programmable! → But very slow ✘

Coprocessor is fast! → No direct access ✘

Hybrid solution

- Exploit API calls known to use the coprocessor

- CPU for everything else

Simple Example
Modular Exponentiation with Big Numbers

-  Very slow to run on the CPU

-  Any relevant calls in the API?
→ RSA Encryption ✔
→ Uses the coprocessor ✔

→ Limitations on the modulo size ✘
→ Modulo on CPU has decent speed ✔

EC Point-scalar multiplication
Elliptic Curves in 30
seconds:

-  P, Q are elliptic curve points
-  Each point has coordinates

(x,y)
-  P+Q: Just draw two lines
-  P+P: Very similar
-  P+P = 2P
-  What about 3P, 4P, 1000P?

EC Point-scalar multiplication

Multiplication (5 times P) as:
§  Additions → 5P = P+P+P+P+P (5 operations)

§  Additions and Doublings → 5P= 2P + 2P + P (3 operations)

§  A smarter way → Double-n-Add Algorithm
↪ Uses less additions and doublings

EC Point-scalar multiplication

-  Double & Add → Too many operations to use the CPU

-  We need another operation that will use the coprocessor

Fail	

Double	
&	
Add	

EC Point-scalar multiplication

-  Double & Add → Too many operations to use the CPU

-  We need another operation that will use the coprocessor

-  Back to the API specification…

API?	

Fail	

Double	
&	
Add	

EC Point-scalar multiplication

-  Key agreement using ECDH *is* scalar multiplication!

-  API Method: ALG_EC_DH_PLAIN

- Description: Diffie-Hellman (DH) secret value derivation

 primitive as per NIST Special Publication 800-56Ar2.

API?	
ECDH	

Fail	

Double	
&	
Add	

EC Point-scalar multiplication

- In practice this means that the method returns only coordinate x.

-  Remember: “Each point has coordinates (x,y)”

-  We need y too.

API?	
ECDH	

Fail	

Double	
&	
Add	

Fail	

EC Point-scalar multiplication

-  Can we somehow infer y?

-  EC formula: y2=x3+Ax+B
-  We know all unknown variables except y!

API?	
ECDH	

Fail	

Double	
&	
Add	

Fail	

y?	

EC Point-scalar multiplication

-  EC formula: y2=x3+Ax+B → Compute y2

-  Then compute the square root of y2

-  This will give us +y, -y.

-  But which one is the correct one?

API?	
ECDH	

Fail	

Double	
&	
Add	

Fail	

y?	

EC Point-scalar multiplication

-  EC formula: y2=x3+Ax+B → Compute y2

-  Then compute the square root of y2

-  This will give us +y, -y.

-  But which one is the correct one? → No way to know!

API?	
ECDH	

Fail	

Double	
&	
Add	

Fail	

y?	

Fail	

EC Point-scalar multiplication

-  Two candidate EC points: P = (x,y) P’ = (x, -y)

-  How to distinguish the correct one?

-  Back to the API specification…

API?	
ECDH!	

Fail	

Double	
&	
Add	

Fail	

y?	

Fail	

API?	

EC Point-scalar multiplication

-  Two candidate EC points: P = (x,y) P’ = (x, -y)

-  How to distinguish the correct one?

-  Let use ECDSA!

API?	
ECDH	

Fail	

Double	
&	
Add	

Fail	

y?	

Fail	

API?	
ECDSA	

EC Point-scalar multiplication

-  ECDSA uses:
→ A private key to sign a plaintext.
→ A public key to verify a signature.

Two candidate EC points P = (x,y) P’ = (x, -y) and a scalar x

API?	
ECDH	

Fail	

Double	
&	
Add	

Fail	

y?	

Fail	

API?	
ECDSA	

EC Point-scalar multiplication

-  Two candidate EC points P = (x,y) P’ = (x, -y) and a scalar x

-  ECDSA abuse:
→ A private key to sign a plaintext ← This is our scalar
→ A public key to verify a signature. ← This is our P and P’

- 

API?	
ECDH	

Fail	

Double	
&	
Add	

Fail	

y?	

Fail	

API?	
ECDSA	

EC Point-scalar multiplication

-  Two candidate EC points P = (x,y) P’ = (x, -y) and a scalar x

-  ECDSA abuse:
→ A private key to sign a plaintext ← This is our scalar
→ A public key to verify a signature. ← This is our P and P’

-  Then try to verify with the two points and see which one it is. ■

API?	
ECDH	

Fail	

Double	
&	
Add	

Fail	

y?	

Fail	

API?	
ECDSA	 Done!	

EC Point-scalar multiplication

The full algorithm
1.  Input scalar x and point P

2.  Abuse ECDH key exchange to get [x,+y,-y]

3.  Compute the two candidate points P, P’

4.  Sign with scalar x as priv key

5.  Try to verify with P as pub key

6.  If it works → It’s P
 else → It’s P’

7.  return P or P’

(co-processor)

(CPU)

(co-processor)

(co-processor)

JCMathLib Performance
Depends on
- The card’s processor

-  The algorithms the card supports
→ E.g., if card supports ALG_EC_SVDP_DH_PLAIN_XY (3.0.5) native speed
→ Else we have to use ALG_EC_SVDP_DH_PLAIN and be slower

Measurements

JCMathLib Performance

Measurements

JCMathLib Convenience Features

- We take care of the low-level/dirty stuff:

q  Unified memory management of shared objects
q  Safe reuse of pre-allocated arrays with locking and automated

erasure
q  Adapt placement of data in RAM or EEPROM for optimal

performance

-  Supports both physical cards and simulators
q  JCardSim pull requests

Profiler
- Speed optimization of on-card code notoriously difficult

- No free performance profiler available

How-to:

1.  Insert generic performance “traps” into source-code

2.  Run automatic processor to create helper code for analysis

3.  The profiler executes the target operation multiple times

4.  Annotates the code with the measured timings

5.  Bonus: Helps to detect where exactly generic exceptions occur

Performance profiler
private short multiplication_x_KA(Bignat scalar, byte[] outBuffer, short outBufferOffset) {

 priv.setS(scalar.as_byte_array(), (short) 0, scalar.length());

 keyAgreement.init(priv);

 short len = this.getW(point_arr1, (short) 0);

 len = keyAgreement.generateSecret(point_arr1, (short) 0, len, outBuffer, outBufferOffset);

 return COORD_SIZE;
}	

private short multiplication_x_KA(Bignat scalar, byte[] outBuffer, short outBufferOffset) {
 PM.check(PM.TRAP_ECPOINT_MULT_X_0);
 priv.setS(scalar.as_byte_array(), (short) 0, scalar.length());
 PM.check(PM.TRAP_ECPOINT_MULT_X_0);

 keyAgreement.init(priv);
 PM.check(PM.TRAP_ECPOINT_MULT_X_0);

 short len = this.getW(point_arr1, (short) 0);
 PM.check(PM.TRAP_ECPOINT_MULT_X_0);
 len = keyAgreement.generateSecret(point_arr1, (short) 0, len, outBuffer, outBufferOffset);
 PM.check(PM.TRAP_ECPOINT_MULT_X_0);

 return COORD_SIZE;
}	

private short multiplication_x_KA(Bignat scalar, byte[] outBuffer, short outBufferOffset) {
 PM.check(PM.TRAP_ECPOINT_MULT_X_1);
 priv.setS(scalar.as_byte_array(), (short) 0, scalar.length());
 PM.check(PM.TRAP_ECPOINT_MULT_X_2);

 keyAgreement.init(priv);
 PM.check(PM.TRAP_ECPOINT_MULT_X_3);

 short len = this.getW(point_arr1, (short) 0);
 PM.check(PM.TRAP_ECPOINT_MULT_X_4);
 len = keyAgreement.generateSecret(point_arr1, (short) 0, len, outBuffer, outBufferOffset);
 PM.check(PM.TRAP_ECPOINT_MULT_X_5);

 return COORD_SIZE;
}	

Client-side	tesQng	code	

private short multiplication_x_KA(Bignat scalar, byte[] outBuffer, short outBufferOffset) {
 PM.check(PM.TRAP_ECPOINT_MULT_X_1); // 40 ms (gd60,1500968219581)
 priv.setS(scalar.as_byte_array(), (short) 0, scalar.length());
 PM.check(PM.TRAP_ECPOINT_MULT_X_2); // 12 ms (gd60,1500968219581)

 keyAgreement.init(priv);
 PM.check(PM.TRAP_ECPOINT_MULT_X_3); // 120 ms (gd60,1500968219581)

 short len = this.getW(point_arr1, (short) 0);
 PM.check(PM.TRAP_ECPOINT_MULT_X_4); // 9 ms (gd60,1500968219581)
 len = keyAgreement.generateSecret(point_arr1, (short) 0, len, outBuffer, outBufferOffset);
 PM.check(PM.TRAP_ECPOINT_MULT_X_5); // 186 ms (gd60,1500968219581)

 return COORD_SIZE;
}	

Toolchain
1.  Code using standard Java dev tools (any IDE + javac)

2.  Code is debugged JCardSim simulator

3.  Communication with card using standard
javax.smartcardio.*

4.  Applet is converted using ant-javacard scripts

5.  Upload to real card using GlobalPlatformPro

6.  Find a suitable card using the table in jcalgtest.org

How to start with JavaCard for Java
developers

1.  Download BouncyCrypto / JCMathAlg from GitHub

2.  Use examples and Maven/ant scripts to build them

3.  Start using JavaCards and test with JCardSim simulator

4.  You may use cloud JavaCards – more info in GitHub soon

5.  You buy some real JavaCards

6.  Use available scripts in the BouncyCrypto repo

7.  Deploy as needed

JCAlgTest.org	–	a	large	project	analyzing	capabiliNes	of	JavaCards	

Takeaways
§  JavaCards are an affordable and convenient way of separating security

critical code and secrets
§  You can use JavaCard code in local hardware, cloud JavaCards, or in

simulators (local or listening on an TCP/IP port)
§  JCMath Lib fills the gap in modern crypto algorithms - ECC

→ Developers now free to build
→ Examples & Documentation
→ No 3-year lag anymore

§  Profiler & Complete Toolchain
§  Working on…

Takeaways
§  JavaCards are an affordable and convenient way of separating security

critical code and secrets
§  You can use JavaCard code in local hardware, cloud JavaCards, or in

simulators (local or listening on an TCP/IP port)
§  JCMath Lib fills the gap in modern crypto algorithms - ECC

→ Developers now free to build
→ Examples & Documentation
→ No 3-year lag anymore

§  Profiler & Complete Toolchain
§  Working on…

§  Toolchain, examples, quick get-started integration scenarios and templates

Q & A

OpenCrypto
Unchaining the JavaCard

Ecosystem

https://bouncycrypto.com

Related Work

Features	 Details	
	

Big	Natural	Class	
•  Uses	CPU	
•  Card-specific	
•  Not	maintained	

Similar	to	Java	BigInteger	 •  Part	of	project	
•  Source	code	dump	

MutableBigInteger	Class	 •  Part	of	project	
•  Source	code	dump	

