\ b o i
) 3 e
-) ",»" 4 1
f 4 “vy '
%)
]
] %

o o, = ,0 “ ¥ '
:«',ﬁ-{ p w-, & Y K ,‘:. i ;
i | “)’ T tq"g 'Q' |

\

"‘\‘ s
I y.

4 Unchainir!. the

JavaCard £ce ystem

Who we are

Vasilios Mavroudis
Doctoral Researcher, UCL

George Danezis
Professor, UCL

Petr Svenda
Assistant Professor, MUNI
Co-founder, Enigma Bridge

Dan Cvrcek
Co-founder, Enigma Bridge

Contents

Smart Cards

Java Cards

What's the problem?
Our solution

Tools for developers

" More to come...

SmartCards

- GSM SIM modules
- Digital signatures
- Bank payment card (EMV standard)

- System authentication

- Operatiﬂons authorizations

- ePassports

The Hardware

- 8-32 bit processor @ 10+MHz

- Persistent memory 32-150kB (EEPRON :_
- Volatile fast RAM, usually <<10kB
- Truly Random Number Generator
! Cryptogréphic Coprocessor (3DES,AES,RSA-2048,...)

- Limited interface, small trusted computing base

The Hardware

Intended for physically unprotected environment /N
- NIST FIPS140-2 standard, Level 4
- Common Criteria EAL4+/5+/6

Tamper protection
- Tamper-evidence (visible if physically manipulated)
- Tamper-resistance (can withstand physical attack)
- Tamper-response (erase keys...)

Protection against side-channel attacks (power,EM,fault)

Periodic tests of TRNG functionality

Why we like smartcards

- Number of vendors and independent HW platforms
- High-level of security (CC EALS+, FIPS 140-2)

- Secure memory and storage

- Fast cryptographic coprocessor

a Prograrﬁmable secure execution environment

- High-quality and very fast RNG

» On-card asymmetric key generation

Operating Systems

MultOS

- Multiple supported languages
- Native compilation

- Certified to high-levels

- Often used in bank cards

.NET for smartcards
- Similar to JavaCard, but C#

- Limited market penetration

JavaCard

- Open platform from Sun/
Oracle

- Applets portable between
cards

History

Until 1996:
- Every major smart card vendor had a proprietary solution

- Smart card issuers were asking for interoperability between vendors

In 1997

- The Java Card Forum was founded

- Sun Microsystems was invited as owner of the Java technology

- And smart card vendors became Java Card licensees

The Java Card Spec is born

Sun was responsible for managing:
« The Java Card Platform Specification
= The reference implementation

« A compliance kit

Today, 20 years after:
- Oracle releases the Java Card specifications (VM, RE, API)

- and provides the SDK for applet development

The APl Specification

- Encryption, authentication, & other algorithms
- Ensures interoperability
- JC straightforward to use

- Implementations are certified for functionality and security

A full ecosystem with laboratories & certification authorities

A success!

20 Billion Java Cards sold in total
3 Billion Javacards sold per year

1 Billion contactless cards in 2016

Common Use Cases:
- Telecommunications
- Payments

- Loyalty Cards

JavaCardForum

Timeline

2015 - Diffie-Hellman modular exponentiation, RSA-3072, SHAS3, plain
DSA

2011 - DES MACS8 ISO9797.

2009 - SHA-224, SHAZ2 for all signature algorithms

‘ 2006 - SHA-256, SHA-384, SHA-512, ISO9796-2, HMAC, Korean
SEED

‘ 2002 - EC Diffie-Hellman, ECC keys, AES, RSA with variable key length

‘ 2000 - RSA without padding.

Wikipedia

Bad Omens |

Compliance
« RMI introduced in Java Card Spec. 2.2 (2003) — never adopted
« Java Card 3.0 Connected (2009) — never implemented

= Annotation framework for security interoperability — not adopted

- Vendors implement a subset of the Java Card specification:
o No list of algorithms supported

o The specific card must be tested

Bad Omens |l

Three years late
- 1 year to develop the new platform after the release of a specification
- 1 year to get functional and security certification

- 1 year to produce and deploy the cards

Interoperability
- Most cards run a single applet
- Most applets written & tested for a single card

- Most applets run only on a single vendor’s cards

Walled Gardens

Proprietary APls

- Additional classes offering various desirable features
- Newer Algorithms, Math, Elliptic Curves...

- Vendor specific, interoperability is lost

- Only for large customers

- Small dev houses rarely gain access

- Very secretive: NDAs, Very limited info on the internet

Motivation

- Technology moves increasingly fast, 3 years is a long time

- Patchy coverage of the latest crypto algorithms

- in-the-spec # in-the-market

A new landscape:

- loT needs a platform with these characteristics

- Lots of small dev. houses

- Java devs in awe — No Integers, Primitive Garbage Collection

- People want to build new things!!

Things People Already Built!

- Store and compute on PGP private key
- Bitcoin hardware wallet

- Generate one-time passwords

- 2 factor authentication

- Store disk encryption keys

- SSH keys secure storage

What if they had access to the full power of the cards?

List of JavaCard open-source apps: https://github.com/EnigmaBridge/javacard-curated-list

The OpenCrypto Project

Algorithms

EC Arithmetic

r JCMath
/ Integer/Biglnteger\

Native Crypto
Data Types Algorithms

> JCAPI

Class

JCMath Lib

Java

JC Spec.

JC Reality JCMathlLib

Integers
BigNumber
EC Curve

EC Point

v
4

~N

Integer
Addition
Subtraction
Multiplication
Division
Modulo

Exponentiation

JCMath Lib

BigNumber
Addition (+Modular)
Subtract (+Modular)

Multiplication (+Modular)
Division
Exponentiation
(+Modular)

++, --

EC Arithmetic
Point Negation
Point Addition

Point Subtraction

Scalar Multiplication

package opencrypto.jcmathlib;

public class ECExample extends javacard.framework.Applet {
final static byte[] ECPOINT = {(byte)0x04, (byte) Ox3B... };
final static byte[] SCALAR = {(byte) 0xES8, (byte) 0x05... };

MLConfig mlc;
ECCurve curve;
ECPoint pointl, point2;

public ECExample() {
// Pre-allocate all helper structures
mic = new MLConfig((short) 256);
// Pre-allocate standard SecP256r1 curve and two EC points on this curve
curve = new ECCurve(false, SecP256rl.p, SecP256rl.a,

SecP256rl1.b, SecP256r1.G, SecP256rl1.r, mic);
pointl = new ECPoint(curve, mic);

point2 = new ECPoint(curve, mic);

// NOTE: very simple EC usage example - no CLA/INS, no communication with host...
public void process(APDU apdu) {
if (selectingApplet()) { return; }

// Generate first point at random

pointl.randomize();
// Set second point to predefined value

point2.setW(ECPOINT, (short) 0, (short) ECPOINT.length);
// Add two points together

pointl.add(point2);
// Multiply point by large scalar

pointl.multiplication(SCALAR, (short) 0, (short) SCALAR.length);
}

Building the Building Blocks

CPU is programmable! — But very slow

Coprocessor is fast! — No direct access

Hybrid solution
- Exploit API calls known to use the coprocessor

- CPU for everything else

Simple Example

Modular Exponentiation with Big Numbers

- Very slow to run on the CPU
Public Key (n,e)

- Any relevant calls in the API? l

— RSA Encryption ¢
Plain text (m) . W Cipher text (c)
— Uses the coprocessor v e e] C = m° (mod n) B

— Limitations on the modulo size

— Modulo on CPU has decent speed ¢

EC Point-scalar multiplication

Elliptic Curves in 30
seconds:

- P, Q are elliptic curve points

- Each point has coordinates
8%
- P+Q: Just draw two lines

- P+P: Very similar
PP ="2P
- What about 3P, 4P, 1000P?

EC Point-scalar multiplication

Multiplication (5 times P) as:

- Additions — 5P = P+P+P+P+P (5 operations)
- Additions and Doublings — 5P= 2P + 2P + P (3 operations)
- A smarter way — Double-n-Add Algorithm

= Uses less additions and doublings

EC Point-scalar multiplication

N

- Double & Add — Too many operations to use the CPU

- We need another operation that will use the coprocessor

EC Point-scalar multiplication

N/

- Double & Add — Too many operations to use the CPU
- We need another operation that will use the coprocessor

- Back to the API specification...

EC Point-scalar multiplication

N/

- Key agreement using ECDH *is* scalar multiplication!
- APl Method: ALG_EC _DH PLAIN
- Description: Diffie-Hellman (DH) secret value derivation

primitive as per NIST Special Publication 800-56Ar2.

EC Point-scalar multiplication

/N

- In practice this means that the method returns only coordinate x.
- Remember: “Each point has coordinates (x,y)”

- We need y too.

EC Point-scalar multiplication

@00

Fail Fail

- Can we somehow infer y?

. EC formula: y?=x3+Ax+B

- We know all unknown variables except y!

EC Point-scalar multiplication

@00

Fail Fail

- EC formula: y2=x3+Ax+B — Compute y?
- Then compute the square root of y?
- This will give us +y, -y.

- But which one is the correct one?

EC Point-scalar multiplication

/ N

- EC formula: y2=x3+Ax+B — Compute y?

- Then compute the square root of y?

- This will give us +y, -y.

- But which one is the correct one? — No way to know!

EC Point-scalar multiplication

@0 00

Fail Fail Fail

- Two candidate EC points: P =(x,y) P’ = (x, -y)
- How to distinguish the correct one?

- Back to the API specification...

EC Point-scalar multiplication

@0 06

Fail Fail Fail

- Two candidate EC points: P =(x,y)
- How to distinguish the correct one?

- Let use ECDSA!

EC Point-scalar multiplication

@0 06

Fail Fail Fail

- ECDSA uses:
— A private key to sign a plaintext.

— A public key to verify a signature.

Two candidate EC points P = (x,y) P’ = (x, -y) and a scalar x

EC Point-scalar multiplication

@0 06

Fail Fail Fail

- Two candidate EC points P = (x,y) P’ = (x, -y) and a scalar x

- ECDSA abuse:
— A private key to sign a plaintext «— This is our scalar
— A public key to verify a signature. — This is our P and P’

EC Point-scalar multiplication

@0 06

Fail Fail Fail

- Two candidate EC points P = (x,y) P’ = (x, -y) and a scalar x

- ECDSA abuse:
— A private key to sign a plaintext «— This is our scalar
— A public key to verify a signature. — This is our P and P’

- Then try to verify with the two points and see which one itis. m

EC Point-scalar multiplication

The full algorithm
Input scalar x and point P

Abuse ECDH key exchange to get [x,+y,-y] (co-processor)

Sign with scalar x as priv key CO-processor)

(
Compute the two candidate points P, P’ (CPU)

(

(

Try to Verify with P as pUb key CO- processor)

If it works — It's P
else — It's P’

return P or P’

JCMathLib Performance

Depends on
- The card’s processor

- The algorithms the card supports

— E.qg., if card supports ALG_EC_SVDP_DH_PLAIN_XY (3.0.5) native speed
— Else we have to use ALG_EC_SVDP_DH_PLAIN and be slower

ECPoint operations (256b) NXP J2E081 NXP J2D081 G&D Smartcafe 6.0
Measu rements randomize() 296 ms 245 ms 503 ms
add(256b) 2995 ms 2892 ms 2747 ms
negation() 112 ms 109 ms 94 ms

multiplication(256b) 4157 ms 3981 ms 3854 ms

JCMathLib Performance

Measurements

Bignat operations NXP J2E081 NXP J2D081 G&D Smartcafe 6.0
add(256b) 7 ms 10 ms 10 ms
subtract(256b) 14 ms 22 ms 11 ms
multiplication(256b) 112 ms 113 ms 117 ms
mod(256b) 30 ms 31ms 23 ms
mod_add(256b, 256b) 71 ms 72 ms 56 ms
mod_mult(256b, 256b) 872 ms 855 ms 921 ms

mod_exp(2, 256b) 766 ms 697 ms 667 ms

JCMathLib Convenience Features

- We take care of the low-level/dirty stuff:
o Unified memory management of shared objects

o Safe reuse of pre-allocated arrays with locking and automated
erasure

o Adapt placement of data in RAM or EEPROM for optimal
performance

- Supports both physical cards and simulators
o JCardSim pull requests

Profiler

- Speed optimization of on-card code notoriously difficult

- No free performance profiler available

How-to:
Insert generic performance “traps” into source-code

Run automatic processor to create helper code for analysis
The profiler executes the target operation multiple times
Annotates the code with the measured timings

Bonus: Helps to detect where exactly generic exceptions occur

Performance profiler

private short multiplication_x_KA(Bignat scalar, byte[] outBuffer, short outBufferOffset) {
PM.check(PM.TRAP_ECPOINT_MULT_X_1); // 40 ms (gd60,1500968219581)
priv.setS(scalar.as_byte_array(), (short) 0, scalar.length());
PM.check(PM.TRAP_ECPOINT_MULT_X_2); // 12 ms (9gd60,1500968219581)

keyAgreement.init(priv);
PM.check(PM.TRAP_ECPOINT_MULT_X_3); // 120 ms (gd60,1500968219581)

short len = this.getW(point_arrl, (short) 0);

PM.check(PM.TRAP_ECPOINT_MULT_X_4); // 9 ms (gd60,1500968219581)

len = keyAgreement.generateSecret(point_arrl, (short) O, len, outBuffer, outBufferOffset);
PM.check(PM.TRAP_ECPOINT_MULT_X_5); // 186 ms (9d60,1500968219581)

return COORD_SIZE;

Toolchain

Code using standard Java dev tools (any IDE + javac)
Code is debugged JCardSim simul)

Communication with card using standard
javax.smartcardio.” O

Applet is converted using ant-javacard scrO

Upload to real card using GlobalPlatformPro &

Find a suitable card using the table in jcalgtest.org

How to start with JavaCard for Java
developers

Download BouncyCrypto / JCMathAlg from GitHub
Use examples and Maven/ant scripts to build them

Start using JavaCards and test with JCardSim simulator

You may use cloud JavaCards - more info in GitHub soon

You buy some real JavaCards
Use available scripts in the BouncyCrypto repo

Deploy as needed

AlgTest.org — a large project analyzing capabilities of JavaCards

JCSystem.getMaxCommitCapacity() 21 - - - - - - - - - - - - - = = = = = = = = = = -
- troduced|

NS OEaE e e BRI R E R
Extended APDU 222 - no no - - - - - - - - no - - - - no no no no no no - -

troduced

ALG_DES_CBC_NOPAD =21 yes
ALG_DES_CBC_IS09797_M1 €21 yes no yes yes
ALG_DES_CBC_IS09797_M2 €21 yes no yes
ALG_DES_CBC_PKCS5 €21 no no yes yes yes yes yes no yes yes yes yes yes no yes no no no
ALG_DES_ECB_NOPAD 21 yes b f d 1 d b
ALG_DES_ECB_IS09797_M1 21 yes N umber Of cards In ata ase
ALG_DES_ECB_IS09797_M2 =21 yes
ALG_DES_ECB_PKCS5 =21 no 70
ALG_RSA_15014888 21 no
ALG_RSA_PKCS1 €21 yes yes 6 O
ALG_RSA_IS09796 21 no no
ALG_RSA_NOPAD 2141 yes yes

no no no no

ALG_AES_BLOCK_128_CBC_NOPAD 220 s"s;’:”"s yes 50

ALG_AES_BLOCK_128_ECB_NOPAD 220 0 s“‘:‘::"s ¥ | Feitian JavaCOS A22 : ALG_AES_BLOCK_ 40

ALG_RSA_PKCS1_OAEP no no no no no

ALG_KOREAN_SEED_ECB_NOPAD 222 no yes yes no no

ALG_KOREAN_SEED_CBC_NOPAD 222 yes yes no
ALG_AES_BLOCK_192_CBC_NOPAD 3.01 no no no
ALG_AES_BLOCK_192_ECB_NOPAD 3.01 no no no no no no
ALG_AES_BLOCK_256_CBC_NOPAD 3.01 no no no no no no
ALG_AES_BLOCK_256_ECB_NOPAD 3.01 no no no no no no
ALG_AES_CBC_IS09797_M1 3.01 yes no yes yes yes yes l
ALG_AES_CBC_IS09797_M2 3.01 yes no yes yes yes yes

ALG_AES_CBC_PKCS5 3.01 yes no yes yes yes yes
ALG_AES_ECB_IS09797_M1 301 yes no ves | yes | yes yes 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

ALG_AES_ECB_IS09797_M2 3.01 yes no yes yes yes yes yes yes - no no no no - - - - - - no no

ALG_AES_ECB_PKCS5 yes yes
c9

3.01 no - - yes no yes yes yes yes no yes yes - no no no no - - - - - - no no
troduced
e M N N I I E N I I B B A A R A R R R R R A
ALG_DES_MAC4_NOPAD =21 no no yes yes yes yes yes yes yes yes yes no yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes
ALG_DES_MACS_NOPAD €21 yes yes yes yes yes yes yes no yes yes yes yes yes yes yes yes yes yes yes yes yes yes
ALG_DES_MAC4_1S09797_M1 =21 yes yes yes yes yes yes yes no yes yes yes yes yes yes yes yes yes yes yes yes yes
ALG_DES_MACS_1S09797_M1 €21 yes yes yes yes yes yes yes no yes yes yes yes yes yes yes yes yes yes yes yes yes
ALG_DES_MAC4_1S09797_M2 €21 yes yes yes yes no yes yes yes yes yes yes yes yes yes

ALG_DES_MACS_IS09797_M2 =21 yes yes yes yes yes yes yes yes yes yes yes yes yes yes

ALG_DES_MAC4_PKCS5 €21 no yes yes yes no yes yes yes yes yes no yes no no

LELCGEAWEVE

- JavaCards are an affordable and convenient way of separating security
critical code and secrets

= You can use JavaCard code in local hardware, cloud JavaCards, or in
simulators (local or listening on an TCP/IP port)

JCMath Lib fills the gap in modern crypto algorithms - ECC
— Developers now free to build
— Examples & Documentation
— No 3-year lag anymore

- Profiler & Complete Toolchain
- Working on...

IELCENEVE

- JavaCards are an affordable and convenient way of separating security
critical code and secrets

= You can use JavaCard code in local hardware, cloud JavaCards, or in
simulators (local or listening on an TCP/IP port)

JCMath Lib fills the gap in modern crypto algorithms - ECC
— Developers now free to build
— Examples & Documentation
— No 3-year lag anymore

= Profiler & Complete Toolchain
- Working on...

- Toolchain, examples, quick get-started integration scenarios and templates

Unchaining th?.;évaCard

Ecosystem

Related Work

Project Features Details

Uses CPU
OV-Chip 2.0 Big Natural Class Card-specific
Not maintained

JCMath Similar to Java Biglnteger Part of project
Source code dump

E-Verification MutableBiginteger Class Part of project
Source code dump

